9,951 research outputs found

    Compensation of voltage drops in solid-state switches used with thermoelectric generators

    Get PDF
    Seebeck effect solid state switch was developed eliminating thermoelectric generator switch voltage drops. Semiconductor switches were fabricated from materials with large Seebeck coefficients, arranged such that Seebeck potential is generated with such polarity that current flow is aided

    Laser energy converted into electric power

    Get PDF
    Apparatus verifies concepts of converting laser energy directly into electric energy. Mirror, placed in beam and inclined at angle to it, directs small amount of incident radiation to monitor which establishes precise power levels and other beam characteristics. Second mirror and condensing lens direct bulk of laser energy into laser plasmadynamic converter

    Cavity emitter for thermionic converter Patent

    Get PDF
    Thermionic cesium diode converter with cavity emitter

    Probe measurements of a cesium plasma in a simulated thermionic energy converter

    Get PDF
    Cesium-filled thermionic energy converters are considered as electrical energy sources in future spacecraft requiring tens to hundreds of kilowatts of electric power. The high operating temperatures necessary for a large specific power and high efficiency impose stringent constraints on the converter fabrication. The converter physics for reducing operating temperatures and cesium plasma losses are being studied to achieve high reliability without sacrificing the power performance of the converters. Various cesium parameters which affect the converter performance are: (1) electron temperatures, (2) plasma ion densities, and (3) electric potential profiles. These were investigated using a Langmuir probe in a simulated converter. The parameters were measured in different cesium discharge modes

    Laser plasmadynamic energy conversion

    Get PDF
    The generation of electrons ions by interacting an intense laser beam with cesium vapor is considered. Theoretical calculation shows that the conversion efficiency is as high as 40 percent if the entire photon energy is utilized in ionizing the cesium vapor that is generated initially by the incoming laser beam. An output voltage is expected to be generated across two electrodes, one of which is the liquid cesium, by keeping the other electrode at a different work function. Evaluation of the laser plasmadynamic (LPD) converter was performed using pulsed ruby and Nd-glass lasers. Although the results obtained to date indicate an efficiency smaller than that of theoretical predictions, an unoptimized LPD converter did demonstrate the capability of converting laser energy at large power levels. The limitations in the performance may by due to converter geometry, the types of lasers used, and other limitations inherent to the cesium plasma

    Performance evaluations of a nonfueled and a UO2-fueled cylindrical thermionic converter

    Get PDF
    Performance and life tests of nonfueled and UO2-fueled cylindrical thermionic converte

    Photovoltaic research and development in Japan

    Get PDF
    The status of the Japanese photovoltaic (PV) R&D activities was surveyed through literature searches, private communications, and site visits in 1982. The results show that the Japanese photovoltaic technology is maturing rapidly, consistent with the steady government funding under the Sunshine Project. Two main thrusts of the Project are: (1) completion of the solar panel production pilot plants using cast ingot and sheet silicon materials, and (2) development of large area amorphous silicon solar cells with acceptable efficiency (10 to 12%). An experimental automated solar panel production plant rated at 500 kW/yr is currently under construction for the Sunshine Project for completion in March 1983. Efficiencies demonstrated by experimental large are amorphous silicon solar cells are approaching 8%. Small area amorphous silicon solar cells are, however, currently being mass produced and marketed by several companies at an equivalent annual rate of 2 MW/yr for consumer electronic applications. There is no evidence of an immediate move by the Japanese PV industry to enter extensively into the photovoltaic power market, domestic or otherwise. However, the photovoltaic technology itself could become ready for such an entry in the very near future, especially by making use of advanced process automation technologies

    Out-of-core Evaluations of Uranium Nitride-fueled Converters

    Get PDF
    Two uranium nitride fueled converters were tested parametrically for their initial characterization and are currently being life-tested out of core. Test method being employed for the parametric and the diagnostic measurements during the life tests, and test results are presented. One converter with a rhenium emitter had an initial output power density of 6.9 W/ sq cm at the black body emitter temperature of 1900 K. The power density remained unchanged for the first 1000 hr of life test but degraded nearly 50% percent during the following 1000 hr. Electrode work function measurements indicated that the uranium fuel was diffusing out of the emitter clad of 0.635 mm. The other converter with a tungsten emitter had an initial output power density of 2.2 W/ sq cm at 1900 K with a power density of 3.9 W/sq cm at 4300 h. The power density suddenly degraded within 20 hr to practically zero output at 4735 hr

    Thermionic diode switching has high temperature application

    Get PDF
    Thermionic converter switch permits chopping in the immediate vicinity of a low-voltage, high current power source, eliminating line losses due to temperature limitations of semiconductor devices

    Low work function silicon collector for thermionic converters

    Get PDF
    To improve the efficiency of present thermionic converters, single crystal silicon was investigated as a low work function collector material. The experiments were conducted in a test vehicle which resembled an actual thermionic converter. Work function as low as 1.0eV was obtained with an n-type silicon. The stabilities of the activated surfaces at elevated temperatures were tested by raising the collector temperature up to 829 K. By increasing the Cs arrival rate, it was possible to restore the originally activated low work function of the surface at elevated surface temperatures. These results, plotted in the form of Rasor-Warner curve, show a behavior similar to that of metal electrode except that the minimum work function was much lower with silicon than with metals
    corecore